Name_	 	
Date_	 	

Advanced Algebra

Learning Targets

Focused Instruction: Unit 4 Quadratics

Learning Targets: This is an organized list of learning targets to help you prepare for the Unit Test. Please rank each topic using the provided scale.

If you are a low rank on a topic you should: look in your notes, do some research on the topic, look in your green book in CHAPTER 4page 193-199, and Chapter 7 Page 361-398, ask as a friend who has a higher rank on that topic than you, as a question to the teacher.

Term	Where can I look up extra support on this learning target	could teach this topic to others	I can do this topic on my own	I can do this topic with some help	I do not understand this topic at all
I know the three quadratic forms: General Form Vertex Form Factored Form	Page 371				
I can easily move between the forms of a quadratic given information about 1 of the forms	Week #1 Homework and Week number 2 homework				
I can factor with a coefficient of 1 I can factor with a coefficient of more than 1	See Extra Support Material See Extra Support Material				
I can use zero product property I can use finite difference to find the degree and equation of a polynomial	See Extra Support Material This is just subtracting. Look at page 361				

I can multiply	See Extra Support Materials		
two binomials			
using the box or foil			
I can find the	This can be done by using		
zeros of a	the quadratic formula or		
quadratic	using the zero product		
quadratic	property after you factor		
	the problem.		
I can find the	This is a very big essential		
vertex of a	concept for the entire unit!		
quadratic	The process is to		
'	1) Find the roots		
	2) Add the roots		
	3) Divide the sum by		
	2		
	4) Do VARS of that		
	value to find the		
	corresponding y		
	value of the vertex		
I can write a	This is a very important		
quadratic in	concept that comes from		
Vertex form	out work in Unit 2. We first		
	learned		
	Y=a(x-h)+k		
	We should already know		
	that h is a horizontal shift		
	and k is a vertical shift. So		
	you can write the vertex		
	from by just finding the		
	vertex and putting the		
	numbers where they go		
	into this essential concept		
	from unit 2:		
1	Y=a(x-h)+k		
I can complete	Page 377		
the square as a			
way to write a quadratic into			
Vertex form			
Vertex form			
I can use the	Page 385 or see the extra		
quadratic	support material posted		
formula	, , , , , , , , , , , , , , , , , , , ,		
I know what the	The discriminant is given by		
Discriminant is	the formula		
and what it tell	The following three things		
me.	could happen:		
	1) If b^2 -4ac< 0, then		
	there are 2		
	conjugate pairs		
	imaginary roots		

_	2	1		T
	2) If b^2 -4ac= 0, then			
	there is 1 real root			
	called a double			
	root			
	3) If b^2 -4ac>0, there			
	are two different			
	real roots			
I am aware than	Page 391:			
there is a number	Note: IN this class we only			
set that deals	deal with an introduction to			
with complex	this topic. It will be			
numbers	continued in other classes.			
	You need to know that			
	i ² =-1			
	Your answers to an			
	imaginary root will always			
	be in the form a+bi and a-bi			
I know what a	Page 391			
	a+bi and a-bi			
conjugate pair is				
	Work the example $y=x^2-8x+22$			
	With the quadratic formula			
	and you will get 2 numbers in			
	this form			
I can maximize	Very important application;			
the area of a	You should be able to do			
fence given a	this with both a 4 sided			
fixed perimeter. I	fence and a three sided			
understand that	fence that uses an existing			
this graph will be	wall as one side.			
a parabola!	Wall as one side.			
I can maximize	We did this in Unit 2! It			
the volume of a	comes up again in Unit 4			
box	and 5			
DOX	You should be mastering			
	this			
I can write the	uns			
equation of a				
parabola given				
the roots and a				
point I can write the				
equation of a				
parabola given				
the axis of				
symmetry, one				
root and a point				